
J .  Fluid Mech. (1975), vol. 68, part 3, pp.  447-466 

Printed in Great Britain 

44 7 

On double-roll convection in a rotating magnetic system 

By P. H. ROBERT§ 
School of Mathematics, University of Newcastle upon Tyne 

AND K. STEWARTSON 
Department of Mathematics, University College London 

(Received 9 July 1974) 

Electrically and thermally conducting inviscid fluid rotating about a vertical 
axis is confined between two horizontal plates maintained a t  different tempera- 
tures, the upper plate being the cooler. The fluid is permeated by a horizontal 
magnetic field that corotates with the fluid. In  an earlier paper (Roberts & 
Stewartson 1974) the fluid is supposed to be in a state of near-marginal instability 
to convective overturning and the nonlinear evolution of single rolls is discussed. 
Inertial terms are neglected. However, if q < 2 and h < 2/33, where q and h 
may be defined by equation (2.3) below, the principle of the exchange of stabili- 
ties holds and there is also a degeneracy in the linear stability problem. There 
are now two distinct unstable rolls equally possible and their nonlinear inter- 
action leads to a violation of the governing equations. This difficulty has already 
been noted by Taylor (1963) and it is resolved in this paper by adding a geostro- 
phic motion (the Taylor shear) parallel to the magnetic field and by restoring 
the inertial terms in the governing equations. We consider particularly instabili- 
ties in which one roll predominates and find that, if h is sufficiently small, each of 
the rolls that can occur is stable with respect to the other, i.e. an initially weak 
roll of the other type dies out relative to it. This means that we can expect the 
fluid motion to consist of single rolls at large times. On the other hand when h 
is near 8/34 both rolls are unstable with respect to the other. The Taylor shear 
does not then die out and the two rolls become comparable in magnitude and 
modify each other’s structure. At intermediate values of h one of the rolls is 
stable in this way and the other unstable. 

The study is motivated by a desire to understand better the dynamical means 
by which a large mass of conducting fluid can create its own magnetism. It 
is argued that these instabilities suggest the existence of a mechanism of self- 
adjustment preventing h from either increasing or decreasing indefinitely and 
noted that, very roughly, h is of order unity in the earth’s core. 

1. Introduction 
The work described below develops further an earlier study (Roberts & 

Stewartson 1974, which will be referred to here as RS) and is part of a continuing 
programme of research motivated by planetary and stellar magnetism. It has 
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the twin objectives of understanding better the dynamical means by which large 
bodies of conducting fluid, such as the earth’s core or the solar convection zone, 
can create their own magnetism, and of deciding what mechanical balance is 
struck that determines the average strength of their fields. A detailed introduction 
to the cosmical application may be found in RS, and $ 6  below contains additional 
points of particular relevance to this paper. 

Our model consists of a plane horizontal layer of inviscid fluid which is finitely 
conducting (in both the thermal and electrical senses) and is permeated by a 
horizontal field that corotates with the layer about the vertical. The upper and 
lower surfaces are maintained a t  different constant temperatures, the upper 
surface being the cooler. The layer is initially in a state of relative rest, and the 
temperature contrast is slowly increased, When it reaches a certain critical value, 
the layer becomes marginally unstable to convective overturning. The type of 
motions that ensues depends in a complicated way on q, the ratio of the thermal 
and magnetic diffusivities, and A, which represents the relative strength of the 
Coriolis and magnetic forces. 

In  this paper, we concentrate on cases in which q < 2 and h < 2/3*, where q 
and h are defined by equation (2.3) below. When q < 2, the principle of the ex- 
change of stabilities holds, i.e. the convection is steady. When h < 2/34 a de- 
generacy arises in the linear stability problem which is absent when h > 2/34: 
this consists of two distinct eigenfunctions corresponding to two rolls inclined to 
the direction of the applied field at  equal but opposite angles. 

On increasing the temperature gradient slightly above the critical value, 
weakly nonlinear convection occurs. This was studied in RS, and a fundamental 
difficulty was encountered. It was found that, if the initial perturbation con- 
tained components of both the critical rolI solutions described above, their non- 
linear interaction created a force that could not be balanced by the pressure 
gradient, Coriolis forces or Lorentz forces, i.e. the governing equations became 
inadequate for the study. The inertial terms, which were entirely omitted from 
RS, are therefore restored in the present paper, and the double-roll solutions are 
considered de novae. 

We find that a double-roll solution generally implies the existence of a geo- 
strophic motion, parallel to the field and independent of the height; we call this 
‘the Taylor shear ’ in recognition of a pioneering paper by Taylor (1 963) in which 
the significance of the flow was first realized. Taylor’s prescription for following 
the evolution of the shear is to add that shear whose associated magnetic effect, 
at  the instant under consideration, exactly cancels out the unbalanced forces 
from other components of the flow, such as those noted above that arise from roll 
interaction. It rests on the idea that the (magnetically modified) inertial and 
Alfvh waves have a very short time scale compared with other processes and 
evolve so quickly that they can continually preserve the balance of forces just 
mentioned. The reader is referred to Taylor’s paper for a full description of the 
method. 

We do not follow this prescription. We explicitly retain the inertial terms and 
so automatically all relevant wave motions. Although this has, compared with 
Taylor’s procedure, the disadvantage of a greater analytic complexity, it has 
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the advantage of leaving open the possibility that the short-period waves are 
unstable, and that the process of continuous adjustment visualized by Taylor 
may not in fact take place. Interestingly enough, we find some cases in which 
Taylor's procedure would omit results that appear to us to be possibly of geo- 
physical significance. This topic is raised again in $ 6. 

The plan of this paper is the following. In  $ 2  the equations are written in a 
dimensionless form like that used in RS, but the geostrophic flow and inertial 
terms are included. The marginal stability problem of RS is reviewed in $ 3, and 
the manner in which the convective double roll gives rise to a Taylor shear is 
described. Two questions are asked in $4. If h < 2/36 and only a single oblique 
roll is present, will a perturbation in the form of the other (missing) oblique roll 
grow or decay '2 And what (if instability occurs) will the character and the growth 
rate of the instability be ? Related questions are posed in $ 5. In  what way is the 
degeneracy of the linear stability problem considered by RS lifted by the presence 
of a small geostrophic shear? What effect does such a shear have on the critical 
temperature gradient for convection ? 

2. The governing equations 
As in RS we are concerned with the stability of an inviscid fluid confined 

between rigid horizontal plates maintained a t  different temperatures and with 
the hotter plate beneath the cooler. The whole system rotates about the vertical 
axis and a uniform magnetic field acts in a fixed horizontal direction relative to 
the rotating frame. Define an orthogonal set of axes Ox*y*z* relative to the 
rotating frame, with Oz* downwards, Oy* in the direction of the applied field 
and 0 in the mid-plane. Let the fluid velocity be V*, the magnetic field B* and 
the temperature 8". Introduce dimensionless variables by the transformations 

77 

d2 d 
t* = -t, r*  = (x*,y*, z * )  = - (x,y,z) = - r, 

K77 7T 

7fK 
v *  = - EV (r, t), B* = B, [? +pmEB(r, t)], d 

a* = 8, + (pd/n-) [z +ee(r, t)]. 

Here d is the distance between the plates, CT is the electrical conductivity of the 
fluid, ,u the permeability, K the thermal diffusivity, B, the magnitude of the im- 
posed magnetic field, 0, the undisturbed temperature at  the origin, p the un- 
disturbed temperature gradient between the plates, 9 a unit vector in the 
direction of y increasing and 6 ( < I )  a parameter representing the magnitude of 
the disturbance applied a t  t = 0. 

The equations governing the motion of the fluid now assume the form 

div V = divB = 0, (2.2a) 

(2.2c) 

v2e - v, - aept = qv. v) e, ( 2 . 2 b )  

avlay + V ~ B  - qaB/at = - eq curl (v x B), 

aB/ay-h%x V-AReA-gradII = -eqcurlBx B+S2aV/at+E62(V.V)V. ( 3 . 2 4  
29 F L M  68 
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Here II is a dimensionless reduced pressure and 
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where Q is the angular velocity of the fluid, po the density, a the coefficient of 
volume expansion, g the acceleration due to gravity and $ a unit vector in the 
downward vertical direction. Following RS we assume that apd, S < 1. In  addi- 
tion we shall, at an appropriate place, assume that S = O(eq). The neglect of 
viscous effects implies that the Ekman number v+/Qd2 is vanishingly small, 
Y being the kinematic viscosity. The boundary conditions associated with these 
equations are that 

V ,  = 8 = B, = aB,/az = aBJ& = o at z = 5 an, (2.4) 

since the plates are fixed and are perfect conductors, both electrically and ther- 
mally. In  addition V ,  B and 8 are assumed to be periodic in x and y for modal 
disturbances and to remain bounded as x 2  + y2 + 00 for centred disturbances. 

Once S is neglected in ( 2 . 2 4  it follows immediately that T = 0, where 

and this was referred to in RS as Taylor’s condition (Taylor 1963). It was noted 
that, when 6 = 0, ( 2 . 2 )  and (2.4) cannot determine the evolution of arbitrarily 
assigned V, B and 0 but only those for which T = 0. Attention was focused 
on marginally unstable solutions of (2.2) for which, for some reason, T = 0. 
In this paper we shall examine a class of motions in which the heuristic approach 
leads to a non-zero T, and discuss how this contradiction might be overcome. 

It may be observed that the physical time scale represented by t is geophysic- 
ally long: taking d to be the core radius, t* is 1010 yr when t = 1. It should not be 
forgotten, however, that q is extremely small in the core (q  * 3 x 10V) and that a 
theory that properly takes this into account may show that t = q is the relevant 
time scale, giving a t* of only 37 000yr. The magnitude of the velocity perturba- 
tion in (2.1) is O(sS2/h) relative to the solid-body rotation; it is much smaller 
than O(eq), the size of the magnetic field perturbations in comparison with Bo. 
An initial O(s) perturbation of B, would, in the absence of Coriolis forces, generate 
Alfvbn waves in a time of order q*S, and fluid motions of order eq&/S would result. 
For the earth’s core this time scale is a few years. It is assumed, so far without 
proof, that this perturbation decays rapidly in terms oft, especially in V, so that, 
when t = O(l) ,  V = O( 1) .  The fall in the value of I VJ means that new terms of the 
governing equation eventually become significant and when that happens there 
is a possibility of an instability setting in of the type discussed by Eltayeb 
(1972) and RS, which leads to a resurgence of the perturbation in a time O( 1) .  

Alfvbn waves of the type just described appear to be drastically affected by 
Coriolis forces. We find, however, that the perturbation field qsB,B in (2.1) 
contains components that do travel with the phase velocity of Alfvbn waves, 
appropriately reduced by the factor qc, i.e. they are associated with the time scale 
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q46/eq; see equation (4.31) below. We shall call these ‘pseudo-Alfv6n waves ’. 
They appear to be associated with the torsional geostrophic waves which Bragin- 
skii (1970) has postulated exist in the earth’s core. 

If in the governing equations (2.2) we set B = 6 = 0 it may easily be seen that 
there is a simple solution in which B = I9 = 0 and V = F(x, t) 4. Thus there are 
two classes of solution to these reduced equations, one of Eltayeb’s type and one 
consisting of a motion down the lines of force; not only could the second class 
be a residue of the larger velocities that must exist when t = O(6) but there is no 
a priori reason why it should ever be small. For the class of disturbances con- 
sidered in RS, T = 0 and there is no need to insist that F + 0. For the class to 
be considered here however T =i= 0, and it turns out that P = O(6-l). 

3. Marginal instability due to a pair of oblique rolls 
It was shown by Eltayeb (1972) and RS ($3) that if h < 2/34 and p < 2 the 

solution V = B = 8 = 0 of (2.2) is in neutral equilibrium if R = 39 provided 
that we set 6 = 0. The critical solution of the linearized equations obtained by also 
omitting all terms O(s)  from (2.2) is given by 

V, = [A,@ + 34m) sin q5, sin z ,  
B, = Qm[A1(l+34m) cos$,sinz, A1(m-3*Z)cosq5,sinz, -2A,sin$,cosz], 
8 , - - _  - ;Alcosq5,cosz. 

A,(m - 344 sin q5, sin z, 3A, cos q5, cosz], 

(3.1) 
Here $1 = zx + my + a,, 
1 and m are constants satisfying m2 = 33h and Z2+m2 = 2, and A,  and a, are 
arbitrary constants. The notation is slightly different from that of equation 
(3.8) of RS but it is hoped that no confusion will arise. Without loss of generality 
we may take 1 > 0 in (3.1) and construct another solution of the linearized equa- 
tions by changing the sign of m, namely 

i V, = [A& - 34m) sin 4, sin z ,  
B, = +m[ - A2(Z - 39m) cos q5, sin z, 

- A,(m + 341) sin q5, sin z, ZA, cos q5, cos z], 

A,(m + 341) cos $, sin z, 2A, sin q5,cosz], 

8, = - $ A ,  cos $, cos 2, 

(3.2) 
where q5, = lx - my + a,, 
and A ,  and a2 are constants. 

When R = 39 the static state is stable to all other small disturbances, and 
when R < 33 it is stable to all disturbances. In  a marginal state of instability, 
when R - 33 is small and positive, the most unstable modes are also given by 
(3.1) and (3.2) although log A ,  and log A, are then linearly increasing functions 
of (R - 39) t. These solutions take the form of simple rolls inclined to the direction 
of the undisturbed magnetic field and the nonlinear evolution of one of them, 
uninfluenced by the others, is discussed in RS. Clearly such an evolutionary study 
is of restricted value because, from a physical standpoint, arbitrary initial 

29-2 
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disturbances are permissible, and it would be exceptional if A,  A ,  turned out to 
be zero. Once this restriction is removed, however, the mathematical problem 
becomes much more difficult and the reason is that Taylor’s condition is violated. 

When B = B, + B,, we have 

qccurlBxB = 

&qhA:[ - (m + 331 cos 22) sin 2$,, ( I  - 3 h  cos 22)  sin 2fi1, - 39 sin 2z( i + cos a$,)] 
+ QsqhAi[(m - 3*Zcos22) sin 2$,, (1 + 39m cos 2x) sin 2$,, - 39 sin 2 4  1 + cos 2$,)] 

+~cqhA,A,[-msin(q5,-~,)+3+1sin(q5,+$,)cos22, -Isin (q5 ,+q5 , )  

(3 .3)  

On regarding (3 .3)  as a forcing term in (2.4) which helps to provide O(E)  contribu- 
tions to V, B and 8, and keeping 6 = 0, we see that, except for the part 

- j ~ q h Z A ~ A , [ 0 ,  sin ($, + $,), 01 = - Zj~qhZAIA,[O, sin (2Zx +a, + a2), 01, 

- 39m sin (q5,  - $,) cos 22, ( Z Z - r n 2 )  39 cos 9, cos q5, cos 221. 

(3 .4)  

every term in ( 3 . 3 )  can be accounted for by assuming that its contribution to the 
final solution has the dependence on x, y and x indicated. In  order to account for 
(3 .4 ) ,  however, we would need a contribution independent of y and z and in 
particular a contribution to V of 

- ZjeqIA,A,[sin ( 2 1 ~  +al + a,), 0, 01, ( 3 . 5 )  

which violates the equation of continuity. Further, (3 .4 )  violates the Taylor 
condition while the other parts of (3 .3 )  are compatible with it. 

If one or both of q < 2 and h < 2/3+ is not satisfied this difficulty does not 
seem to occur with the critical modes or at least it  is not so serious. Thus, if 
34h > 2 and q < 2, or if 3 9 4  1 + q) > 2 and q > 2, the marginally unstable modes 
have I = 0, and so the critical component of curl B x B vanishes. On the other 
hand if 3 ) h ( l  +q) < 2 and q > 2 we again have marginally unstable oblique 
rolls at  slightly supercritical values of R but now a, and a, are linear functions 
of time. Although in the case of modal disturbances like (3 .1)  and (3 .2 )  we may 
expect a term like (3 .4 )  leading to a similar difficulty, it  appears that centred 
disturbances give rise to modulated forms of (3 .1 )  and (3 .2 )  in which A ,  and A ,  
are slowly varying functions of x ,  y and t at large values oft. Each of these would 
move with the appropriate group velocity in a different direction, so that by 
the time they were dominant they would be non-zero only in non-overlapping 
domains. 

We claim that the compatibility of ( 3 . 3 )  with Taylor’s condition may be 
restored by introducing a velocity component 

into the undisturbed state of the fluid, where Fa is hopefully determinate in 
terms of the initial disturbance. In physical terms this corresponds to a drift of 
velocity Qd(2hnq)-lFa62, along the lines of force. It should be noticed that this 
velocity is independent of E ,  although it still remains small in comparison with the 
basic rotational velocity, a characteristic value for which is Qd, and in order 
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to derive an expression for Fa in particular cases we have to assume that 6 < c. 
Weshallreferto (3.6) as the Tuylorsheur. Hisbasicideawasthat,if (2.5)isviolated 
as the initial disturbance to the fluid develops, then there is a back reaction on 
the basic flow which sets up a Taylor shear which compels the disturbance to 
become compatible with (2.5). 

4. The induced Taylor shear 
As explained in $2  the first stage in the evolution of an initial disturbance is 

the setting up of Al fvh  waves for which V = 0(6-lB), the time taken being O(6). 
It is hoped that these decay while t is still small until V = O(B), and that there- 
after 6 may be neglected in (2.2d). If, however, T + 0 as the initial stages of the 
evolution of the disturbances come to an end, we claim that the fluid acquires a 
relatively large velocity F(x,  t)/cq parallel to the lines of force, the Taylor shear, 
through the term 62i3Vy/i3t in (2.2d) and it is desirable that F builds up to  a steady 
value such that the corresponding modifications to the flow make T = 0. If we 
write 

then when p = O( 1) the build-up of F takes place in a time O( 1). For F makes an 
O(F)  cont,ribution to B from ( 2 . 2 ~ )  and hence a contribution to ccurl B x B 
which is O(cqF). Thus we have to balance an O(cp) term from the original non- 
zero value of T, one which is O(cqF) from the modification due to F ,  and an 
O(S2$’/sp) term from the right-hand side of ( 2 . 2 4 .  It follows that if F tends to  a 
limit it must be O( 1) as anticipated by (3.6), and whenp = O( 1)  the time scale on 
which the limit is achieved is also O(1) using (4.1). There is however no a priori 
reason to guarantee that P remains well behaved and in the example we shall 
study below this will be seen not to be invariably the case. 

Although any pair of matched oblique rolls will produce a non-zero value of 
T greatest interest centres round a marginally unstable pair a t  R = 38 + since 
in the absence of a Taylor shear or if the Taylor shear takes some time to develop 
the natural evolution of any weak disturbance will lead to the emergence of such 
pairs as the dominant form of the disturbance. Further, in order to pose an 
analytically tractable problem we shall suppose that one of the pairs is much 
weaker than the other. Thus let us suppose that at time t = 0 the fluid is given a 
disturbance defined by (3.1) and (3.2) with A ,  = AA, and (A1 < 1. The Taylor 
shear needed to cancel (3.4) then makes a weak contribution to B and its effect 
may be regarded as a small perturbation on (3.1). We note in parentheses that 
other pairs may be considered (i.e. not obeying m2 = 31h and 12+m2 = 2) using 
parallel arguments. We write 

v = v , + A u + A ~ + o ( ~ ) ,  ( 4 . 2 ~ )  

B = B, + A S  + O(c),  (4.2b) 

8 = O1 +A&+ O(c),  ( 4 . 2 ~ )  

U = [0 ,  (cp)-l F(x ,  t ) ,  01. (4.2d) 

Here 8, S and & are functions of r and t to be found, and we assume that when 

(4.1) p = 
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t = 0 they are given by (3.2) with A, replaced by A,. In  addition and without any 
loss of generality we take 01, = 0 and a2 = in-. The Taylor shear U is a function of 
x and t onIy and F(x,  0) = 0. On substituting (4.2) into (2.2) we obtain the follow- 
ing set of equations: 

div = div 8 = 0, ( 4 . 3 ~ )  

028 - - aQat = q-1F ae&, (4.3b) 

aT/ay + 0 2 8  - paB/at = mB,/ay - (B,,aF/ax) 9, (4.3c) 

a8lay-AP x P-hR&-gradfi = 0, (4.3d) 

with A < 3/34, R = 33 and the dependent variables satisfying (2.4) as is invari- 
ably the case here. With any choice of a, particularly that of equation (4.5) 
below, these equations may now be solved completely and used to compute 
q(cur1 B) x B. As explained in $ 3  all components of this vector may be cancelled 
by O(e)  contributions to V, B and 6 except that part which gives rise to a non- 
zero value of T. The function U makes two contributions to (2 .2d ) ,  one through 
P x V, which may be cancelled by adding a suitable function of x and t to II, and 
one through SZaVlat, which must be cancelled by T. Thus 

(S/qs)2 aF/at = ((curl B,) x 8 + (curl 8) x B,),, (4.4) 

where (G),  denotes the mean value, with respect to y and z ,  of the y component 
of G. The particular problem posed in this section can be solved by writing 

F = 2f(t) cos 2 1 ~ )  (4.5) 

where f is a function of t only and f (0) = 0. 
It is convenient to write 

V, = (iU, sin z ,  i K  sin z, W, cos z )  e2(zx+mu) + c.c., (4.6) 

where C.C. denotes the complex conjugate and V,, I$ and ;Ct; are constants. In 
fact from (3.1) we have 

u, = - $A,(l f 3 h ) ,  = -:A,(m - 3%), = A,. (4.7) 

Continuing we write 

V = {[3tp-1m21t,(U2e-izz + U 3 e 3 9  + &A,(l - 34m) e-ilz] eimysinz, 

[3*q-lm2A1(V, e-ib + V 3 e 3 9  - &A,(m + 3tZ) e-il”] eimy sin z, 

[ - 3ifiq-lm2A,( Ke-ib + W3e3i9 - iA,e-fJz] eimg cos z )  + c.c., (4.8) 

where U,, U,, V,, V,, W, and W, are functions oft only, all of which vanish at  t = 0. 
In a similar way we define 

B, = (X, sin z ,  Y, sin z, - iZ, cos z )  eiflz+mV) i- c.c., (4.9) 

X,, Y, and 2, being constants whose values follow a t  once from (3.1); a parallel 
expression to (4.8) for B; and 

@ = (6, coszei(lz+my)+ [ - 3~ip-1m2A,(6,e-i2z + O 3 e 3 i l ~ )  + &4,e-ilz] eimy cosz 
+ C.C. + O(s)}, (4.10) 
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where 8, (=  -+Al) is now a constant, and 8, and 8, are functions of t that are 
initially zero. 

Substitute these formulae into (4.3) and take Laplace transforms with respect 
to t. Distinguish Laplace transforms by an overbar, and let s be the parameter 
of the transformation. Then two sets of equations are obtained. The one govern- 
ing g2, V2, W,, X,, T2, E ,  and 8, simplifies to 

I ( 3  + s )  B, + W, = -f/39m, 

( 3 + q . ~ ) ~ T , + m g ,  = (Z+34m)qf/6x 34, 

( 3  + qs) Z, + mF2 = - qf/3f ,  

3 f X 2  = - zU2 + (1 + m2) W 2  + 341mB2, 

332, = - 2&, + Zv2 + 6 x 34mB2, 

(4.11) 

the equat,ion for r, and 
The set for g,, V,, v,, x,, F,, Z, and 8, reduces to 

following from the equation of continuity ( 4 . 3 ~ ) .  

(4.12) 

( 3  + 8Z2 + s) 8, + F3 = -J’/3fm, 

( 3  + 8Z2 + qs) x, + mu, = (I + 34m) qf/6 x 38, 

( 3  + 8Z2+ qs) 2, + m v ,  = - qf /3 f ,  

34( 3 + 81,) 1, = 3Z0, + ( 1  + mz) W, - 3%lm8,, 

34(3 + 81,) Z, = - ( 2  + 8Z2) y3 - 3Zv3 + 3Qm(2 + 8Z2) 8,. 

It may easily be shown that, if 

B = (Xsinx, Ysinz, - ~ Z C O S Z ) ~ ~ ~ ~ + C . C . ,  

where X, Y and Z are complex functions of x and t only, then 

T = (curl B x B), 

(4.13) 

where LYc.c. and Z,, are the complex conjugates of S and 2. Hence, bearing in 
mind that 1A1 1, (4.4) reduces to 

2s(6/qc)2f+ (Z,m2Ay/34q) {[29, - (Z+ 34m) Z,] 
- [ Z S ,  - (I + 34m) Z, - 4Z(Z + 38m) s,]} = - 2Zm2A2,/3b. (4.15) 

We notice that, if a1 $: 0 or a, $: $T, an identical formula to (4.15) is obtained 
if we replace (4.5) by P = 2f(t)sin(2Zx+a,+a2). It should be particularly ob- 
served that according to (4.4) and (4.14) no 41x harmonics will be created in F ,  
so that (4.5) is justified a posteriori. 

To make further progress, it is necessary to  solve (4.11) and (4.12) and sub- 
stitute the resulting expressions into (4.15). After some algebraic reductions, we 
find that (4.11) gives 

X2/AzJ’= (I -q)[m(3+gs)-3k?]+(q/6 x 3)m)[m(Z+34m) (3+s)(3+qs)  

+ 6 x 36m2(3 + ps) - 3@Z2 + 3m2 + 34Zm) ( 3  +s)], (4.16) 

(4.17) zz/A2f = - 2 x 34( 1 - q )  - (q/3fm) ( 3  + s )  [m(6 + gs) + 2 x 3811, 
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l/A, = s[18 + 3q(2 + q )  s + q2s2]. (4.18) 

The similar expressions for 3, and z, that follow from (4.12) will not be given 
explicitly. They are needed only to reduce (4.15) to the form 

(G/smAJ2sf+ [ A 2 [ m ( l - q ) ( 6 + q s ) + ( q / 3 * ) { Z ( 3 + s )  (6+qs)+3tm(6+s)(3+qs)} l  

- A3[m( 1 - q)  ( (2  + 8Z2 + qs) (1  - 21, - 2 x 38Zm) + 4( 1 - 21,)) 

+(q/3~){(Z+38m)(1-Z2-3~Zm) (3+8Z2+qs)(3+8Z2+s) 

+ 3%m( 1 - 21, - 2 x 34177~) (3  + 8Z2 + qs) + 3Z(F- 41,) (3  + 81, + s)}] ] (Z2f/39) 

= -zq2/3ts, (4.19) 

where 

1/A3 = (3 + 8Z2+s) (3 + 8Z2+p~)2- 9(2 + 8Z2) (3 + 8Z2+qs) + 3(3 + 81,) (3  + 8Z2+s). 

(4.20) 

Let us suppose there is a stable final state. It may be found by letting s + 0 
in (4.16)-(4.20). It then follows that 

Referring to (4.8), we see that, when the second roll is initially weak relative to 
the first, the Taylor shear evolves in a way which ultimately causes the second 
roll to disappear entirely, and with it the need for the Taylor shear, which is 
therefore reduced to zero. Although this conclusion is based on an analysis of the 
marginally unstable rolls i t  can, not unexpectedly, be shown to hold for any 
similar pair of rolls. It would be interesting to discover whether the same conclu- 
sion holds when A is not small, but this is a more difficult undertaking, since it 
is not then possible to assume a simple expression such as (4.5) for F .  It is neces- 
sary to express F as a general Fourier series even in x and with period r/Z. 

Probably a more significant question to ask is whether the limit (4.21) is 
attainable from an initial state in which f = 0. For this to be possible it is neces- 
sary that the zeros of the coefficient of 7 in (4.19) should lie to the left of the 
imaginary s axis. It should be pointed out at  once that, perhaps surprisingly, the 
cases of positive and negative m are quite different. It is possible to find values of 
h and q for which the real parts of the roots are all negative for m > 0,  while one 
or more are positive for m < 0. Then, starting with a strong roll (A,) with m > 0, 
and perturbing it with a weak roll (A, = AAJ for which nz < 0,  a transient Taylor 
shear is excited that obliterates the weak roll in an O( 1)  time; but, starting with 
the m < 0 roll dominant, a perturbation in the form of the m > 0 roll grows on 
the O( 1)  time scale until the condition 1 A1 < 1 is violated, and our analysis ceases 
to apply. 

The general case involves locating the roots of a seventh-order polynomial 
equation having complicated coefficients. We shall first illustrate the situation 
by considering two special cases, q -+ 0 and q = 1, in which the polynomial re- 
duces, respectively, to a cubic and a quartic. 
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Taking p2q = 0(1), we find that as q --f 0 the coefficient off in (4.19) is pro- 
portional t o  

[ (5) s2 + 3 C,(s) = [s(412+ 3) + 32141 

[(2Z2- 1)  (422+3)+2 x 31Zm(4Z2+ l)]. (4.22) Zm3 s 
+ 39q( 8Z2 + 3) 

It is clear from (4.22) that, throughout the range 0 < h < 2/33 of interest, the 
roll with negative m is unstable. Also, even if m > 0, C,(s) possesses a root in the 
positive half-plane when 

(212--1)(4/2+3)+2x 39Zrn(412+1) < 0, (4.23) 

i.e. when approximately 
Z < 0.36115, i.e. 1.07940 < h < 213-4. (4.24) 

This holds for finite values of p2q. It may be shown however (see below) that, 
provided that S/cq is sufficiently small, two of the four roots lost by assuming 
that p2q = O(1) have positive real parts for values of h slightly smaller than 
those given in (4.24). 

When q = 1, the coefficient off in (4.19) is proportional to  

- zm2(z+34m) [l -Z(Z+34m)]s(s+6+8Z2). (4.25) 
9 

It is clear from (4.25) that  rolls for which 

Z+39m < 0 (4.26) 

are unstable and that, even if 1 + 33m > 0, C,(s) possesses a root in the positive 
half-plane when 

Z(Z+34m) < 1. (4.27) 

I n  other words, the ‘negative-m roll’ (the roll for which m < 0) is unstable when 

Z < (3/2)*, i.e. 3616 < h < 2/33, (4.28) 

and both rolls are unstable when 

I < 4(34 - l) ,  (4.29) 

It should be noted that all the criteria we have obtained for q -+ 0 and q = 1 
have been independent of p (i.e. of eA, and S). 

It is easy to see from the sign of the constant coefficient of the septic equation 
that arises for general q that the negative-m roll is unstable for 

qZ+3*m < 0, i.e.h > A, = 2q2/39(q2+3). (4.30) 

By considering, in the particular case of small p ,  the coefficients of s7, s6, s5 and s4 
in the governing septic equation obtained from (4.19), we find that two of its 
roots are, to  leading order, 

s = i(qmcA1/3S)3q-&!(Z + 39m) +sl, (4.31) 

i.e. A, = 2-1+ 3-4 < h < 2/34. 
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where s1 is of order unity and changes sign from negative to positive as h in- 
creases through A,. We may conclude that the ‘positive-nL roll’ (the roll for 
which m > 0) is necessarily unstable a t  small p whenever h > A,. That this is not 
necessarily true for all p may be appreciated from the case q = 0, in which 
A, = 1.0773 although (because of the existence of another pair of roots) the roll 
becomes unstable a t  large p when h exceeds 1.0794, approximately. For q = 1, 
the instability occurs at h = A, for all p .  It is conceivable (particularly for q > 1)  
that instability generally arises at some h less than A,, but in $ 5  we shall, for 
simplicity of presentation, regard h = h, as marking marginal stability for the 
positive-m roll for all p .  

It should be clear from this discussion that the limit q -+ 0 is not straight- 
forward, but it is of relevance to core motions in the earth. We hope to discuss 
this limit further in a subsequent paper. 

5. The effect of a weak Taylor shear on marginal instability 
The difficulties that result from the introduction of a weak Taylor shear, 

namely the instabilities occurring in certain ranges of values of 1 and m, or 
equivalently of A, are serious within their own context, but need not be disastrous 
to the whole theory of magneto-fluid oscillations on the time scale envisaged in 
$2. For the shear is weak and it may be that as it grows in strength a feedback 
mechanism is set up which controls the instability and readjusts the flow field.? 
Further, the mechanism producing the shear, a weak double roll, is rather special 
and as soon as a more complicated perturbed field than (4.2) is considered the 
simplicity of (4 .5 )  may be lost. The upshot might be for example that a neutrally 
stable state of the fluid can be obtained a t  some value of R but not necessarily 3%. 
I n  this section we shall initiate a study of how a Taylor shear can exert control 
over the critical modal disturbances. 

Assume that the shear is defined by (4.2d) with F now a function of x only. 
The linearized equations governing small disturbances on the scale of $2  are 
the same as (4.3) except that here we shall suppose that R is arbitrary. The 
possible choices of F depend of course on the evolution of the disturbance a t  small 
times when the scales of $ 2 are inappropriate but we have in mind that they are 
such that T = 0 as t --f 0 on the scale of 0 2. This is a slightly different situation 
from that of $ 4  for there the initial shear was zero. Having found the modal 
solutions which satisfy T = 0 a possible second step might be to consider the 
stability of the solutions on time scales both longer and shorter than t - 1.  

We write 

(5.1) I V = (i U sin z ,  
B = (S sin z ,  
6 = @eimu+iwt 

i V sin z ,  W cos x )  eimv+iot 

- iZ cos x )  eimU+iot Y sin z ,  

where U ,  V ,  W ,  X, Y ,  2 and 0 are now complex and functions of x alone. With 

iD = d / d x ,  (5 .2 )  

t Roberts & Soward (1972, 3 5 )  have shown tha t  this happens in the case of MAC-waves. 
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we obtain from (4.3) 

(D2+m2+ 1) 0 + W = - i (w  +p-lmP) 0, (5.3~) 

(D2+m2+1)X+mU = -i(w+mF)X, (5.3b) 

(5.3d) 

(D2+m2)X+DZ-hW = 0, ( 5 . 3 e )  

equations which are perhaps more fundamental than (4.11) and (4.12). A solu- 
tion of (5.3) is required which is periodic in x and for which T = 0. For given 
P the periodicity condition fixes w .  The condition T = 0 can be simplified by 
using (4.14), which shows that, since there are generally two periodic solutions of 
(5.3) for given F, there is some freedom in the choice of F. 

The programme is formidable and only a little progress towards realizing it 
can be reported here. We shall assume that 

(B2+m2+1)Z+mW = -i(w+mF)Z, (5.3 c) 

DAY+ (m2 + 1) 2- mhR, 0 - hU = mh(R - B,) 0, 

F = ~ A c o s ~ ~ x ,  (5.4) 

where A is a small positive constant and R - Rc = O(A). We shall consider only 
the case (12+m2 = 2, m2 = 3*h, R, = 3%) in which the convection is marginal and 
steady (w = 0) according to the A = 0 theory of RS. We then expand the un- 
knowns in powers of A: 

(5 .5 )  I w = AUl+A2w2+ ... , 
W = W(O)(X)+AF(')(X)+A~W(~)(X)+ ..., 

with similar expressions for the other functions appearing in (5.3). The critical 
value 3% of R for A = 0 is now written as Rco. The equations for the terms indepen- 
dent of A in these expansions coincide with (5.3) when the right-hand sides of 
(5.3) are set equal to zero. Hence we have 

(5.6) W(0) = L eilz + 41 e-il" 
0 0 ,  

with corresponding forms for U@), To), Do) and O(0) that may be inferred from 
RS from (3.1) above. To avoid confusion in interpretation, we reiterate here that 
1 is by convention necessarily positive. In  § 4 the initial conditions placed the two 
possible rolls on a different footing, and it was necessary to allow m to have either 
sign. In  this section, there is no such built-in symmetry and we may therefore 
assume without loss of generality that m is negative, this sign being chosen for 
ease of comparison with $44. The coefficients A, and A, of that section, which 
correspond to the coefficients Lo and M ,  in (5.6), represent respectively the nega- 
tive-m roll and the positive-m roll. 

The equations for the coefficients of A in (5.5) are exemplified by 

(5.7) 

which follows from (5.3 a). It is clear that the solution for I F )  must be of the form 

(5.8) 

Now 1, m and R have been chosen such that the homogeneous equations for 
etc., have a non-trivial solution and so far Lo and Mo are arbitrary con- 

( 0 2  + m2 + 1) + W(1) = - i[w, + q-lm(e2i" + e-2ilz)l @(a), 

W(1) = h7, e3ih + L, e i l ~  + M, e-ilz + N e-3il.z. 
1 
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stants. As a result the linear algebraic equations for L, and 41, have zero coeffi- 
cients and the forcing terms from the right-hand side of (5.7) which are pro- 
portional to e5i1x must therefore vanish. For the marginally unstable case which 
we are studying here this is only possible if 

P. H .  Roberts and K .  Stewnrtson 

(5.9) I q[3*wl + iA-l(R - R,,)] Lo = - (Zq - 3Bm) J1,, 
q[3*w, + i A - l ( R  - R,,)] Jf, = (Zq + 34m) Lo. 

The equations for K ,  and L, are closely related to (4.12) and the equations 
governing the coefficients of A2 in (5.5) include a pair like (5.9) which serve to 
fix L,, 41, and w2. 

From (5.9) our first resuIt is that 

q2[139w, + iA-l(R - R,,)I2 = 3m2 - Z2q2 = 3fh(3  + q2) - 2q2. (5.10) 

Thus if h < h,(q), where ho(q) is given by (4 .30) ,  w, must take one or other of the 
two imaginary values 

iw,,, iw12 = ( R  - RCo)/39A 3-tRC1, (5 .11)  

(5.12) where 

Corresponding to these, (5.9) gives 

R,, = - [2q  - 3*h( 3 + q 2 ) ]  i /q .  

(5.13) 

Whereas in the theory of Eltayeb (1972) the two modal disturbances correspond- 
ing to the chosen values of 1, m and R are of equal status, the Taylor shear has 
removed this degeneracy by selecting particular combinations (5.13) of the two. 
Recalling that 1 > 0 and m < 0, we see that h = A, coincides with the vanishing 
of Zq+3*m[cf. (4 .30)] ,  so that for both the modes (5.11) the amplitude of the 
positive-m roll is, according (5 .13) ,  small compared with that of the negative-m 
roll. A relationship between these results and the findings of Q 4 evidently exists. 

Still supposing that h < A,, we see from (5.11) that one of the two modes, 
namely w, = w12, is unstable a t  R = R,, and grows slowly and aperiodically with 
time, while the other, w1 = w,,, decays. I n  fact, because of the presence of the 
Taylor shear, the critical value of R is reduced from Rco = 3% to 

R, = R,,+AR,,+0(A2). (5.14) 

Taking t'he real parts of expressions such as (5.1), we see that the most unstable 
mode at R = R,, is given by 

= Lo, cos ~ [ C O S  (Zx + my)  -pa sin (K - my)] exp ( A  I R,, I t /34)  + O ( A ) ,  (5.15) 

where Lo, is a real constant. When both modes (5 .11)  are present, we find that 
to leading order 

T = (Zm2p,/6 x 34) cos 2Zx[Li2 exp (2A  I R,, I t/36) - L& exp ( - 2 8  I R,, I t /3*)] .  (5.16) 

We can choose L& = Lfz so that T = 0 a t  t = 0 but it is clear that the different 
evolution rates of the two modes imply that IT1 increases. It follows that F 
must also evolve. A careful study is needed to investigate its subsequent be- 
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haviour but it seems possible that it decays to zero without changing its depen- 
dence on x, the variation with t being determined by arguments parallel to those 
of $4.  The final state then consists of a single roll of constant amplitude because 
as P + 0 the critical value of R returns to Rco. 

On the other hand, when h > ho(g), wll and w,, are real but of opposite signs, 
so that R,, = 0 and the presence of the Taylor shear does not alter the critical 
value of R to order A. There is, however, a slow phase change in the two solutions, 
which means that they cannot be combined to form a simple roll of permanent 
form. Thus, considering one dependent variable V ,  as an illustration, we have 

V ,  = Lo,cosz[cos(lx+my~6,At) Tpocos(lx-myi-6,At)], (5.17) 
where 

346, = 3f(3€qq2)* (h -A,)*. (5.18) 

It is clearly possible to choose L& = LEz, so that the disturbance initially con- 
sists of a simple roll r(3.1) or (3.2)], but as time increases the other roll must come 
into prominence and indeed we see that, formally, a complete exchange takes 
place when 0, At = &r. As when h < A, the appearance of the other roll leads to a 
non-zero value of T; indeed using (5.7) and Lo, = Lo,, we have 

T = 3 - 3 , ~ ~  lm2 Lgl sin 21x sin 2a6, t ,  (5.19) 

showing that F must again evolve with time. Now, however, our studies in 9 4 
show that if A, < h < A, the negative-m roll is unstable and so the evolution of F 
ends when the disturbance either consists of a simple positive-m roll, or takes on 
a more complicated form in which each of the two marginally stable rolls are of 
comparable strength or is even an irregular motion. If A, < h < 2/3* both 
simple rolls are unstable and so the first of these possibilities must then be ex- 
cluded. The discussion of this evolutionary process is rendered more difficult by 
the form of (5.19), in which T is proportional to sin21x rather than cos 21x as is 
the case in $4.  The implications of this change are not yet fully understood. 

6. Conclusions 
In  this paper we have considered a neutral state of equilibrium when q < 2, 

so that stability is about to be lost by ‘the exchange of stabilities’. Within the 
range 0 < h < 2/34, in which the linear stability problem is degenerate, we have 
located two values, 

ho = 2q2/3*(q2+ 3), A, = 2-1 + 3-h ( > ho), (6.1) 

that appear to enjoy a particular significance. 
In  9 4, we have examined the evolution of two rolls, with initial amplitudes A,  

and A ,  ( < A,),  i.e. we have examined the linear stability of an oblique roll (A,)  
of RS with respect to a perturbation by the other oblique roll (A,) .  It was found 
that this stability depends on whether the A ,  roll is supposed to be the positive-m 
mode, i.e. the one whose eigenfunction is proportional to exp [i(Zx +my)], where 
lm > 0, or whether it is the negative-m roll, for which lm < 0. Both possibilities 
are linearly stable if h < A,. If h is increased through A,, the negative-m roll 
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becomes unstable, and if h is increased still further, the positive-m roll follows 
suit. The value of h marking the onset of this instability depends of course on q, 
but also in a complicated way on p .  If p < 1, a value of h exists, namely h = A,, at 
which the real part of two conjugate complex roots of the governing septic 
equation defined by (4.19) changes sign. For simplicity of discussion, we shall 
regard h = A, as marking the transition from stability to instability in all circum- 
stances. [Alternatively the reader may consider that A, is not given by (4.29) 
but is a function of q andp that is unknown: except for q = 1, a t  which it happens 
to coincide for all p with that defined in (4.29).] In  the range A, < h < A, the 
negative-m roll only is unstable; in A, < h < 2/34 both types of roll are unstable. 

There is one firm conclusion that can be drawn from these results: the single- 
roll solutions of the type studied in RS will not generally arise if A, < h < 2/34. 
For, if one roll were to evanesce, its amplitude A ,  would ultimately become small 
compared with A ,  and according to the theory of 0 4 it would start to grow once 
more. It is very probable that both rolls will persist indefinitely with comparable 
amplitudes and with an associated Taylor shear more complicated than that 
assumed in (4.5). As a result, however, the rolls themselves will be modified and 
not have the simple forms of (3.1) and (3.2). Alternatively the laminar flow tacitly 
assumed throughout this paper may be lost and a transition to turbulence take 
place. In  the range A, < h < A, the same possibilities exist but in addition the 
system may well settle down to a single roll of positive m with a zero associated 
Taylor shear. Indeed if the other roll is initially weak this outcome is certain. If 
h < A,, we again have the same possibilities as when A, < h < A, and the remarks 
made about the positive-m roll also apply to the negative-m roll since both are 
then stable to small disturbances. 

A possibly significant difference in the modes of instability arose a t  h = A, 
and h = A,. If h is increased through A,, a single real solution of the septic equation 
defined by (4.19) for the growth rates s of the normal modes passes from negative 
to positive values. This value of s is O( 1), by which we mean that it is proportional 
to A-A,  with an O(1) constant of proportionality, irrespective of the value of 
d/eq. If S/eq is small, this root can be found to leading order by solving the quintic 
equation obtained by formally setting S/eq = 0 in the septic equation. In  other 
words, it can be obtained from the procedure laid down by Taylor (1963). If 
h is increased sufficiently, the positive-m roll becomes unstable, but in a way that 
cannot be understood by Taylor’s method. If S/eq is small, the instability takes 
the form of a pseudo-Alfv6n wave (with a phase velocity proportional to the 
perturbed magnetic field ) whose amplitude increases on the O( 1) time scale. 

The excitation of the Taylor shear by the double-roll solutions played an 
essential part in the evolutionary process just described. In  § 5 we inquired how 
a small Taylor shear, constant in time, will affect the linear stability problem. 
As in RS, the theory ignored the inertial terms, and no significance for A, was 
therefore discovered. Once again, however, A, enjoyed a special significance. 
It was found that the small Taylor shear removes the degeneracy of the problem 
considered by RS, and selects two particular values for AJA,. For h < A,, the 
critical Rayleigh number for the onset of convection in these coupledroll solutions 
is different, one coupled roll being more readily excited to convection, and the 
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other less readily, compared with the RS situation. For fixed Rayleigh number, 
the mode corresponding to one value of A J A ,  grows more rapidly than the other, 
again leading to a violation of Taylor’s condition. 

In  discussing the possible geophysical relevance of our work we should make 
a number of points clear at  the outset. First, the value of q is extremely small 
in the earth’s core (q = 3 x Although our present theory (valid for q < 2 )  
is applicable, additional geophysically interesting information could be expected 
from a theory that treated q as small from the outset. Second, the model can claim 
relevance to the earth only if the core is in an approximately isentropic state. 
There have been suggestions that the core is strongly and stably stratified. 
Vertical motions in such a core would be greatly inhibited, and it is known that 
purely toroidal motions are incapable of sustaining fields by dynamo action (e.g. 
Roberts 1967, p. 82). Our firm opinion is in fact that the existence of a geo- 
magnetic field demonstrates that the prevailing temperature gradient in the core 
cannot be grossly sub-adiabatic. Third, the theory is concerned with values of R 
near 33, whereas R is likely to be very large. In  a private communication Dr 
Braginskii has suggested to us that R might be as large as lo7. Caution must 
therefore be exercised in applying the theory to the earth. Fourth, the theory is 
for plane boundaries, and an extension to spherical boundaries is needed for 
geophysical applications. Dr Soward has privately suggested to us that the pre- 
sence of spherical boundaries might imply restrictions on the properties of the 
unstable waves and in particular that it might then be impossible to generate a 
single roll under any circumstances. This is certainly true for the planetary 
waves studied by Margules (1893) and Haurwitz (1940). Further analysis is 
clearly necessary to decide this important point, but we note that, unlike the 
convection rolls discussed here, variations with respect to z are neglected in 
planetary theory. Further, in studies of inertial waves (e.g. Stewartson & Walton 
1975) in which there is a variation in z, the mechanism preventing the existence of 
single rolls depends on the presence of critical circles and, in turn, these depend 
on retaining the term PaVlat in ( 2 . 2 4 ,  which is neglected in the Eltayeb theory. 

The close coincidence of the geographic and geomagnetic axes when averaged 
over the recent geological past indicates the importance of Coriolis forces in core 
dynamics. This may be confirmed if we note that the Rossby number and Ekman 
number are both small in the core. If we take as the characteristic veIocity u the 
speed of westward drift ( =  10-4m/s) and as the characteristic length the core 
radius a, we see that the Rossby number u / 2 R a  is about 2 x The kinematic 
viscosity of the core possibly lies between 10-7m2/s and 10, m/s, which leads to 
Ekman numbers v /2Ra2 in the range 10-16-10-7. 

The near neutral buoyancy of the core and the importance of Coriolis forces 
give a special significance to the geostrophic component of the core motion. 
This flow is along lines of latitude and is constant on each cylindrical shell drawn 
about the geographical axis and contained in the core. It is unique in being 
completely uninfluenced by rotation, so that small forces that are inhibited 
by Coriolis forces from contributing to other components of the flow can create 
disproportionateIy Iarge geostrophic motions. In  analogy with concepts in the 
atmospheric sciences, transport of mean angular momentum by rising and falling 
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motions in the core may be expected to excite significant geostrophic flows, and 
it is tempting to identify these a t  least in part with the observed westward 
drift, and to assume that the core motions are predominantly geostrophic and of 
magnitude comparable with the observed westward drift. The corresponding 
magnetic Reynolds number R, = uapcr of this flow is large (R, + 100). 

The existence of a geostrophic shear w associated with a large magnetic 
Reynolds number implies that the toroidal field in the core is large, about R, 
times the poloidal field. Extrapolation of the observed (poloidal) field at the 
surface of the earth back to the core surface suggests that the poloidal field in the 
core is about 4gauss, so that the toroidal field there may be of order 400 gauss. The 
corresponding value of h is 0.003. It should be realized however that there is 
considerable uncertainty here and that, on the basis of different arguments, 
values of the mean toroidal field between 100gauss (Hide 1966) and 740 gauss 
(Braginskii 1964 b) have been suggested at various times, giving respectively 
h = 0.05 and h = 0.0009, both of which are large compared with A, = 3 x 10-l2 
for q = 3 x 10-6. 

To complete the dynamo cycle, it  is necessary to use the toroidal field to 
recreate the poloidal field. This cannot be achieved directly since Cowling’s 
theory forbids axisymmetric dynamo fields. The next simplest concept is the 
two-stage Parker (1955) process, in which a motion asymmetric with respect to 
the longitude q5 creates a field with like asymmetry. The inductive interactions 
of this field and motion regenerate axisymmetric fields. This mechanism, in a 
different guise, was called by Steenbeck, Krause & Riidler (1966) the ‘a-effect’. 
In  the case of the earth, it appears to create an axisymmetric toroidal field that 
is negligible compared with that produced by the w-shear described above. Thus, 
only the a-production of poloidal field need be considered. The resulting model is 
sometimes called an aw-dynamo since it functions through the product of a-  
effect and w-shear. The concept of an ao-dynamo requires special care in the 
present context since an exactly geostrophic flow cannot regenerate field in the 
face of Taylor’s constraint (Childress 1969). Also, the a-process we have in mind is 
not that of the turbulent dynamo of Steenbeck et al. (1966), but is the wave inter- 
action mechanism suggested by Braginskii (1964c), which we shall now consider. 

The aw-dynamo just defined gives a new significance to the observed.asym- 
metries of the earth’s field. They must be a manifestation of a large-scale in- 
stability that passes energy (possibly from the gravitational source provided by a 
slightly top-heavy density distribution, thermally or non-thermally created) 
to the large axisymmetric scales of the magnetic field. And reasons have been 
found (e.g. Hide & Stewartson 1972) why the preferred state of instability (i.e. 
the mode most readily excited to convection) should be asymmetric rather than 
axisymmetric. This consistency with Cowling’s theorem is reassuring, but a 
fundamental difficulty remains. It was shown by Braginskii (1964a) that no 
a-production of polodial field could arise if the waves were separable in $ - Gt, 
where G is their angular velocity about the symmetry axis; the regenerative 
cycle would fail to create poloidal field if, for example, the radial velocity as- 
sociated with the wave could be written as W(r, z )  cos ($ - &), where (r, $, z )  are 
cylindrical co-ordinates (see also D. I. Black, reported by Gubbins 1973). The 
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inference is that the eigenvalue problem determining the onset of the waves must 
be degenerate. It must be one of the objectives of any dynamical theory to dis- 
cover how such degeneracies can occur, and to confirm that they can create 
poloidal field. The harder task of ensuring that these fields are strong enough to 
sustain the dynamo may be regarded as a more distant objective of the theory. 

Another aim should be mentioned. There is a common belief, whose plausibility 
can be confirmed from the estimate made above, that the Coriolis forces in the 
core are of the same order as the Lorentz forces, i.e. 2pstu is roughly of the same 
order as Bg/,ua, where B, and u are a typical toroidal field strength and toroidal 
velocity. (As a corollary, the typical Alfv6n velocity V [ = Bo/(,up)4] based on'the 
toroidal field strength would be large compared with u, and the magnetic energy 
density would be large compared with the kinetic energy density of the motions 
relative to the rotating frame.) We have also seen that the condition for dynamo 
action is that the magnetic Reynolds number R, should to geophysical accuracy 
be of order unity. Thus, the approximate equality of Coriolis and Lorentz forces 
implies that h should be of order one in the core. The dynamical reason for this 
should be sought. 

We now consider what light our work throws on these questions. For reasons 
of analytical expediency, we have assumed a planar geometry, in which the y 
direction corresponds to longitude and the z direction to the radial direction in a 
spherical case. Our theory requires that the two parameters S and E should both 
be small compared with unity. Substituting our estimates of 5 1 into (2.3) we see 
that 6 is approximately It is more difficult to estimate E .  If we took BOP 
in (2.1) to be the toroidal field and , ~ C K E B ~  B to be the non-dipole field, we should 
find that E fi 300. It should not be forgotten however that ours is a q = O(1) 
theory, and that the criterion for the validity of the q -+ 0 theory we advocated 
earlier is unlikely to be as simple as E < 1. Further, the study of the fields when 
E < 1 can be regarded as a first step in the regenerative process which ultimately 
leads to larger values of E .  For this reason we continue to examine the geophysical 
context, and note that S/eq is about 

Turning now to the difficulty of a-production by wave instabilities (Braginskii 
1 9 6 4 ~ ) ~  we see that the required degeneracy of the eigenvalue problem can arise 
in our model provided that h < 2/34. Moreover, it can be shown that an a-effect 
exists, the double roll being associated with an electric current that is independent 
of y and parallel to B,. The combined a-effect and w-shear are not, however, 
sufficient for a regenerative ao-dynamo in our model. Assuming that this 
deficiency can be overcome in a more elaborate model, we examine possible 
implications of our work in dynamo theory. 

If h > 2/36, the preferred mode of instability is a single roll transverse to B,, and 
the absence of any degeneracy excludes dynamo action. To be self-sustaining, 
the magnetic field must be perturbed past this threshold. We have found indica- 
tions, described above, that as h decreases one roll has more permanence than 
the other and is excited to a greater amplitude. This suggests that the required 
a-effect will become progressively less efficient as the dynamo strengthens the 
toroidal field B,, an opinion confirmed by the linear stability of both rolls 
for h < A,. This strongly suggests the existence of a dynamical mechanism of 

according to values given above. 
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selfadjustment that might limit h to values of order unity as required by the 
geophysical application (see above). 

Another pertinent question concerns the use of Taylor’s procedure in theoreti- 
cal studies of core magnetohydrodynamics. Since some of our more interesting 
results concerning the behaviour of instabilities of the quasi-Alfv6n type are 
filtered out from Taylor’s approximation, we have some reservations about the 
indiscriminate application of Taylor’s method to core motions. We believe it 
is necessary to retain the inertial terms in the equation of geostrophic flow if 
these doubts are to be dispelled. 
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